PRISON OUTREACH

Tulane University students are collaborating with the inmates of Lafayette Parish Correctional Center through an introductory creative writing class taught by Zachary Lazor, an associate professor of English in the School of Liberal Arts. This spring, 12 Tulane students are partnering with an equal number of inmates to produce a book of original works.

In another prison-based project, doctoral student Annie Fretias heads The Newcomb Prison Project, a new initiative of the Newcomb College Institute that will connect students with local organizations to help bring classroom-style learning to both incarcerated and formerly incarcerated people. The Newcomb Prison Project will host speakers, film screenings and workshops that explore the intersections of race, class, gender and incarceration, and the effects of education on prison re-entry rates.

New Orleans is the driver of that signature Tulane innovation. New Orleans adds syncopation to our teaching. Improvisation to our research. It inspires us to become creative risk-takers who succeed. It’s the reason our students don’t just march to the beat of their own drum—they dance.

I wouldn’t have it any other way, and I am proud of the edge Tulanians have over their peers as a result. Tulane is what happens when you take a world-class research university and inject it with magic and joy.

That is what Tulane is all about.

Mike

Dear alumni, parents, faculty, staff and friends,

I want to tell you a story about seven extraordinary Tulanians who built something literally out of this world. A month ago, they participated in a competition held by NASA called “The BIG Idea Challenge.”

You see, NASA had a problem it couldn’t solve. It needed to send larger and larger loads of equipment to the space station, but it needed to pile that equipment into as small a package as possible. It’s a puzzle—imagine you were asked to fit as many potato chips as possible into a small container—stacking them like Pringles might be your best bet.

NASA had a great idea—it decided to ask college students around the country to try to solve the problem for them. Most of the 29 teams were made up of students from the top aerospace engineering programs.

Seven Tulane students—with a heck of a lot of chutzpah among them—got together and formed a team. None of them were aerospace engineers. Instead, they came from physics, economics and architecture.

At the competition, they watched each team present their meticulous ideas. Every other design worked to tweak the traditional NASA idea of a satellite: a sphere with rectangular flaps that fold into it.

Then, it was Tulane’s turn. They presented something entirely different. Like Pringles, they thought to load a bunch of hexagons into a tube. Then, once the equipment was loaded, they showed how the hexagons would stack together into a solid block. The design was so effective that NASA selected Tulane to take the idea to the next level.

Dear alumni, parents, faculty, staff and friends,

I want to tell you a story about seven extraordinary Tulanians who built something literally out of this world. A month ago, they participated in a competition held by NASA called “The BIG Idea Challenge.”

You see, NASA had a problem it couldn’t solve. It needed to send larger and larger loads of equipment to the space station, but it needed to pile that equipment into as small a package as possible. It’s a puzzle—imagine you were asked to fit as many potato chips as possible into a small container—stacking them like Pringles might be your best bet.

NASA had a great idea—it decided to ask college students around the country to try to solve the problem for them. Most of the 29 teams were made up of students from the top aerospace engineering programs.

Seven Tulane students—with a heck of a lot of chutzpah among them—got together and formed a team. None of them were aerospace engineers. Instead, they came from physics, economics and architecture.

At the competition, they watched each team present their meticulous ideas. Every other design worked to tweak the traditional NASA idea of a satellite: a sphere with rectangular flaps that fold into it.

Then, it was Tulane’s turn. They presented something entirely different. Like Pringles, they thought to load a bunch of hexagons into a tube. Then, once the equipment was loaded, they showed how the hexagons would stack together into a solid block. The design was so effective that NASA selected Tulane to take the idea to the next level.

Dear alumni, parents, faculty, staff and friends,

I want to tell you a story about seven extraordinary Tulanians who built something literally out of this world. A month ago, they participated in a competition held by NASA called “The BIG Idea Challenge.”

You see, NASA had a problem it couldn’t solve. It needed to send larger and larger loads of equipment to the space station, but it needed to pile that equipment into as small a package as possible. It’s a puzzle—imagine you were asked to fit as many potato chips as possible into a small container—stacking them like Pringles might be your best bet.

NASA had a great idea—it decided to ask college students around the country to try to solve the problem for them. Most of the 29 teams were made up of students from the top aerospace engineering programs.

Seven Tulane students—with a heck of a lot of chutzpah among them—got together and formed a team. None of them were aerospace engineers. Instead, they came from physics, economics and architecture.

At the competition, they watched each team present their meticulous ideas. Every other design worked to tweak the traditional NASA idea of a satellite: a sphere with rectangular flaps that fold into it.

Then, it was Tulane’s turn. They presented something entirely different. Like Pringles, they thought to load a bunch of hexagons into a tube. Then, once the equipment was loaded, they showed how the hexagons would stack together into a solid block. The design was so effective that NASA selected Tulane to take the idea to the next level.

Dear alumni, parents, faculty, staff and friends,

I want to tell you a story about seven extraordinary Tulanians who built something literally out of this world. A month ago, they participated in a competition held by NASA called “The BIG Idea Challenge.”

You see, NASA had a problem it couldn’t solve. It needed to send larger and larger loads of equipment to the space station, but it needed to pile that equipment into as small a package as possible. It’s a puzzle—imagine you were asked to fit as many potato chips as possible into a small container—stacking them like Pringles might be your best bet.

NASA had a great idea—it decided to ask college students around the country to try to solve the problem for them. Most of the 29 teams were made up of students from the top aerospace engineering programs.

Seven Tulane students—with a heck of a lot of chutzpah among them—got together and formed a team. None of them were aerospace engineers. Instead, they came from physics, economics and architecture.

At the competition, they watched each team present their meticulous ideas. Every other design worked to tweak the traditional NASA idea of a satellite: a sphere with rectangular flaps that fold into it.

Then, it was Tulane’s turn. They presented something entirely different. Like Pringles, they thought to load a bunch of hexagons into a tube. Then, once the equipment was loaded, they showed how the hexagons would stack together into a solid block. The design was so effective that NASA selected Tulane to take the idea to the next level.

Dear alumni, parents, faculty, staff and friends,

I want to tell you a story about seven extraordinary Tulanians who built something literally out of this world. A month ago, they participated in a competition held by NASA called “The BIG Idea Challenge.”

You see, NASA had a problem it couldn’t solve. It needed to send larger and larger loads of equipment to the space station, but it needed to pile that equipment into as small a package as possible. It’s a puzzle—imagine you were asked to fit as many potato chips as possible into a small container—stacking them like Pringles might be your best bet.

NASA had a great idea—it decided to ask college students around the country to try to solve the problem for them. Most of the 29 teams were made up of students from the top aerospace engineering programs.

Seven Tulane students—with a heck of a lot of chutzpah among them—got together and formed a team. None of them were aerospace engineers. Instead, they came from physics, economics and architecture.

At the competition, they watched each team present their meticulous ideas. Every other design worked to tweak the traditional NASA idea of a satellite: a sphere with rectangular flaps that fold into it.

Then, it was Tulane’s turn. They presented something entirely different. Like Pringles, they thought to load a bunch of hexagons into a tube. Then, once the equipment was loaded, they showed how the hexagons would stack together into a solid block. The design was so effective that NASA selected Tulane to take the idea to the next level.

Dear alumni, parents, faculty, staff and friends,

I want to tell you a story about seven extraordinary Tulanians who built something literally out of this world. A month ago, they participated in a competition held by NASA called “The BIG Idea Challenge.”

You see, NASA had a problem it couldn’t solve. It needed to send larger and larger loads of equipment to the space station, but it needed to pile that equipment into as small a package as possible. It’s a puzzle—imagine you were asked to fit as many potato chips as possible into a small container—stacking them like Pringles might be your best bet.

NASA had a great idea—it decided to ask college students around the country to try to solve the problem for them. Most of the 29 teams were made up of students from the top aerospace engineering programs.

Seven Tulane students—with a heck of a lot of chutzpah among them—got together and formed a team. None of them were aerospace engineers. Instead, they came from physics, economics and architecture.

At the competition, they watched each team present their meticulous ideas. Every other design worked to tweak the traditional NASA idea of a satellite: a sphere with rectangular flaps that fold into it.

Then, it was Tulane’s turn. They presented something entirely different. Like Pringles, they thought to load a bunch of hexagons into a tube. Then, once the equipment was loaded, they showed how the hexagons would stack together into a solid block. The design was so effective that NASA selected Tulane to take the idea to the next level.
shuttle reaches space, those hexagons unfold into what the students have dubbed "the sunflower," exposing the shuttle’s solar panels to the sun for fuel.

You could hear a pin drop. The judges had never seen anything like it. Ethan Gasta, a member of the team, said, “We knew, at that moment, we were either going to come in first place or dead last.”

Ethan and the team won in an incredible upset, and they will all be continuing their research this summer with paid internships at NASA. Fittingly, they’ll be working with the “Game Changing Development” team.

It’s a quintessentially Tulane story, and it speaks to who we are and where we are heading.

I have this theory about the kind of student who chooses to come to Tulane and New Orleans. They’ve got a lot of guts. They’re adventurous, willing to take risks and stray from the beaten path.

Tulane takes these students and helps them understand that it’s not always an advantage to think exactly like your competitors. We show them the power of different perspectives and thinking across fields. As Walter Isaacson, a member of Tulane’s Board and soon our faculty, once said: “Innovation will come from people who are able to link beauty to engineering, humanity to technology and poetry to processors.”

At Tulane, we don’t just think outside of the box. We tear the box apart, and rebuild it into something no one has ever seen before. And this is how we train our students to solve the world’s problems. Or, in this case, how we solve intergalactic problems.

But why is Tulane so innovative? I think it has a lot to do with Tulane’s origins. Most schools were started as liberal arts colleges on the ecclesiastical model—wonderful—but entirely inward-looking.

Tulane started as a medical college with a purpose—to solve the problem of yellow fever. And then Tulane grew with public health, law, English and business.

We excel in liberal arts, but also in connecting across disciplines. We teach knowledge for its own sake, but also to solve the world’s toughest problems.

During Mardi Gras, I had another epiphany about what makes Tulane so special. I was watching the Muses parade, shedding the last of my dignity in an attempt to obtain an elusive shoe, when I realized that nearly everyone in the parade seemed to be a member of Tulane’s community.

As I watched them, I realized the full extent of the extraordinary creativity they were engaged in—from creating beautiful shoes, to composing intricate dance numbers. I’m looking at you, 610 Stompers.

New Orleans is unrelentingly creative. I’ve seen its adventure and quirkiness and magic. Every day, I witness that spirit propel New Orleans to new heights. It’s no surprise that AOL co-founder Steve Case believes New Orleans is "poised to re-emerge as one of the great startup cities in the country, maybe even the world.” And I’ve now seen how that energy has infected Tulane. Watching the Muses parade go by, I saw a willingness to push boundaries. I saw a reimagining of what the world should look like. And I saw a serious dedication to glitter.

CONTINUED ON NEXT PAGE »
shuttle reaches space, those hexagons unfold into what the students have dubbed “the sunflower,” exposing the shuttle’s solar panels to the sun for fuel.

You could hear a pin drop. The judges had never seen anything like it. Ethan Gasta, a member of the team, said, “We knew, at that moment, we were either going to come in first place or dead last.”

Ethan and the team won in an incredible upset, and they will all be continuing their research this summer with paid internships at NASA. Fittingly, they’ll be working with the “Game Changing Development” team.

It’s a quintessentially Tulane story, and it speaks to who we are and where we are heading.

I have this theory about the kind of student who chooses to come to Tulane and New Orleans. They’ve got a lot of guts. They’re adventurous, willing to take risks and stray from the beaten path.

Tulane takes these students and helps them understand that it’s not always an advantage to think exactly like your competitors. We show them the power of different perspectives and thinking across fields. As Walter Isaacson, a member of Tulane’s Board and soon our faculty, once said: “Innovation will come from people who are able to link beauty to engineering, humanity to technology and poetry to processors.”

At Tulane, we don’t just think outside of the box. We tear the box apart, and rebuild it into something no one has ever seen before.

And this is how we train our students to solve the world’s problems.

Or, in this case, how we solve intergalactic problems.

But why is Tulane so innovative? I think it has a lot to do with Tulane’s origins. Most schools were started as liberal arts colleges on the ecclesiastical model—wonderful—but entirely inward-looking.

Tulane started as a medical college with a purpose—to solve the problem of yellow fever. And then Tulane grew with public health, law, English and business.

We excel in liberal arts, but also in connecting across disciplines. We teach knowledge for its own sake, but also to solve the world’s toughest problems.

During Mardi Gras, I had another epiphany about what makes Tulane so special. I was watching the Muses parade, shedding the last of my dignity in an attempt to obtain an elusive shoe, when I realized that nearly everyone in the parade seemed to be a member of Tulane’s community.

As I watched them, I realized the full extent of the extraordinary creativity they were engaged in—from creating beautiful shoes, to composing intricate dance numbers. I’m looking at you, 60 Stompers.

New Orleans is unrelentingly creative. I’ve seen its adventure and quirkiness and magic. Every day, I witness that spirit propel New Orleans to new heights. It’s no surprise that AOL co-founder Steve Case believes New Orleans is “poised to re-emerge as one of the great startup cities in the country, maybe even the world.”

And I’ve now seen how that energy has infected Tulane. Watching the Muses parade go by, I saw a willingness to push boundaries. I saw a reimagining of what the world should look like. And I saw a serious dedication to glitter.

CONTINUED ON NEXT PAGE »
TOUGH TURF
Tulane researchers are studying the resilience of certain species along the Louisiana coast—species such as Spartina alterniflora, an iconic type of marsh grass in the wetlands. After the Deepwater Horizon oil spill in 2010, Spartina bore the brunt of the leaked oil, with thousands of acres covered in sludge.

According to Sunshine Van Bael, assistant professor of ecology and evolutionary biology, Spartina doesn’t just take the punch; it fights back. With the help of symbiotic microbes called endophytes, which act similarly to gut flora in the human microbiome, bacteria within Spartina tissues may be breaking down the hydrocarbons in oil to render it less toxic.

Aided by a grant from the Gulf of Mexico Research Initiative, Van Bael’s lab has been studying this process using oil samples collected directly from the BP spill. The research could have long-term impacts on the future of Louisiana’s coast, said Van Bael.

“Oil spills will keep happening, unfortunately,” she said. “But it’s good to know what we can do with endophytes. Our goal is to find species that can help these grasses break down oil, and to help these plants respond to stress.”